Actin cytoskeleton organization and posttranscriptional regulation of endothelial nitric oxide synthase during cell growth.

نویسندگان

  • Charles D Searles
  • Lucienne Ide
  • Michael E Davis
  • Hua Cai
  • Martina Weber
چکیده

Posttranscriptional regulation of endothelial nitric oxide synthase (eNOS) expression is an important mechanism by which endothelial cells respond to various physiological and pathophysiological stimuli. Previously, we showed that eNOS expression was dramatically altered by the state of cell growth and that the mechanism responsible for this regulation was entirely posttranscriptional, occurring via changes in eNOS mRNA stability. The present study identifies a role for actin cytoskeleton organization in the posttranscriptional regulation of eNOS during cell growth and examines the relationship between the state of actin polymerization and eNOS expression. We identified monomeric actin (globular [G]-actin) as the major component of a 51-kDa ribonucleoprotein that binds to the eNOS mRNA 3' untranslated region in UV-crosslinking analysis. Binding activity of the ribonucleoprotein complex correlated with the relative concentration of G-actin versus filamentous actin (F-actin). ENOS transcripts colocalized with cytoplasmic G-actin in cells subjected to fluorescence in situ hybridization and G-actin fluorescence staining. In subcellular fractionation studies, eNOS transcripts were enriched in the free polysomal fraction of nonproliferating cells and enriched in the cell matrix-associated polysomal fraction of proliferating cells. Furthermore, an inverse relationship between the concentration of G-actin and eNOS expression was observed in endothelial cells subjected to pharmacological alteration of their cytoskeleton; lower G/F-actin ratios correlated with increased eNOS expression. Our findings provide some insight into how endothelial cells may use the dynamic organization of the actin cytoskeleton to regulate expression of an enzyme that is crucial to vascular homeostasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rho protein-mediated changes in the structure of the actin cytoskeleton regulate human inducible NO synthase gene expression.

Rho proteins (Rho, Rac, Cdc 42) are known to control the organization of the actin cytoskeleton as well as gene expression. Inhibition of Rho proteins by Clostridium difficile toxin B disrupted the F-actin cytoskeleton and enhanced cytokine-induced inducible nitric oxide synthase (iNOS) expression in human epithelial cells. Also specific inhibition by Y-27632 of p160ROCK, which mediates Rho eff...

متن کامل

Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression.

The ability of the endothelium to produce nitric oxide is essential to maintenance of vascular homeostasis; disturbance of this ability is a major contributor to the pathogenesis of vascular disease. In vivo studies have demonstrated that expression of endothelial nitric oxide synthase (eNOS) is vital to endothelial function and have led to the understanding that eNOS expression is subject to m...

متن کامل

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Growth and density-dependent regulation of NO synthase by the actin cytoskeleton in pulmonary artery endothelial cells.

We previously reported association of eNOS with actin increases eNOS activity. In the present study, regulation of activity of eNOS by actin cytoskeleton during endothelial growth was studied. We found eNOS activity in PAEC increased when cells grew from preconfluence to confluence. eNOS activity was much greater in PAEC in higher density than those in lower density, suggesting increase in eNOS...

متن کامل

The response of fenestrations , actin and caveolin - 1 to vascular endothelial growth factor in SK Hep 1 cells ( a liver endothelial cell line )

To study the regulation of fenestrations by vascular endothelial growth factor in liver sinusoidal endothelial cells, SK Hep1 cells were transfected with GFP-actin and GFPcaveolin-1. SK Hep1 cells had pores some of which appeared to be fenestrations (diameter 55 ± 28 nm, porosity 2.0 ± 1.4%), rudimentary sieve plates, bristle-coated micropinocytotic vesicles and expressed caveolin-1, von Willeb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 95 5  شماره 

صفحات  -

تاریخ انتشار 2004